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Abstract 

Many countries have adopted a public health approach that aims to address the particular challenges faced 

during the pandemic Coronavirus disease 2019 (COVID-19). Researchers mobilized to manage and limit the 

spread of the virus, and multiple artificial intelligence-based systems are designed to automatically detect the 

disease. Among these systems, voice-based ones since the virus have a major impact on voice production due 

to the respiratory system's dysfunction. In this paper, we investigate and analyze the effectiveness of cough 

analysis to accurately detect COVID-19. To do so, we distinguished positive COVID patients from healthy 

controls. After the gammatone cepstral coefficients (GTCC) and the Mel-frequency cepstral coefficients 

(MFCC) extraction, we have done the feature selection (FS) and classification with multiple machine learning 

algorithms. By combining all features and the 3-nearest neighbor (3NN) classifier, we achieved the highest 

classification results. The model is able to detect COVID-19 patients with accuracy and an f1-score above 98 

percent. When applying FS, the higher accuracy and F1-score were achieved by the same model and the ReliefF 

algorithm, we lose 1 percent of accuracy by mapping only 12 features instead of the original 53. 

  

Keywords: COVID-19, cough recordings, machine learning, Mel-frequency cepstral coefficients,  

gammatone cepstral coefficients, feature selection. 

 
1. INTRODUCTION 

 

SARS-Cov-2 infection is the cause of the new 

COVID-19, which includes mild and severe forms. 

Patients infected with SARS-Cov-2 may present 

with a wide range of symptoms. The most common 

signs of the disease are fever (73% of cases) as well 

as symptoms of the flu-like syndrome, in association 

with respiratory signs such as cough (82%) and 

dyspnoea (31%). More rarely, anosmia, ageusia, or 

hemoptysis can be found. Intestinal symptoms were 

also evident in 10% of patients, such as vomiting, 

diarrhea, or abdominal pain [1-2]. 

In the absence of a specific therapy available to 

date, it is essential to be able to diagnose this disease 

as early as possible to isolate infected subjects and 

thus limit the spread of the epidemic. The reference 

diagnostic method is laboratory research for viral 

RNA by reverse transcriptase–polymerase chain 

reaction (RT-PCR) from nasopharyngeal swabs. 

However, obtaining the results takes several hours, 

and only certain laboratories have this test. 

Furthermore, although the specificity of the viral test 

is excellent, its sensitivity is imperfect (60 to 70%) 

because it depends on the quality of the sample and 

the rate of viral replication within the upper 

respiratory tract [3-4]. 

During the first wave of the COVID-19 

pandemic, the influx of patients challenged 
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healthcare facilities to quickly adapt healthcare 

systems and services. Although a considerable effort 

was made to adapt facilities, care protocols and 

modalities, and infection protocols. In the fight 

against COVID-19, organizations have quickly 

applied their machine learning expertise to reduce 

the likelihood and risk of COVID-19 spreading. 

Recent years have seen a huge increase in the use 

of deep learning and machine learning in medical 

applications. Several studies have proposed systems 

based on deep learning for the diagnosis of COVID-

19 utilizing medical imaging [5-7]. In addition to 

tailored networks [8-9], others are constructed using 

pre-trained models using transfer learning [10-11].  

Recent studies have been examining the 

differences between respiratory sounds from healthy 

persons and patients who tested positive for COVID-

19 (such as coughs, breathing, and voice) [12-13], an 

electronic stethoscope was used to capture and 

evaluate the respiratory sounds of ten individuals 

who had COVID-19 infections. All patients were 

found to have anomalous breath sounds, including 

cackles, unclassifiable murmurs, abnormal vesicular 

breath sounds, and augmented or weakened voice 

resonance.  

Recent pathological analyses revealed that 

COVID-19 patients' lungs displayed varying degrees 

of consolidation [14]. According to the findings of 

the imaging examination, the predominant 
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symptoms of COVID-19 patients were many 

pulmonary plaques, ground glass shadows, 

infiltrating shadows, and in more severe cases, lung 

consolidation [15]. Other studies have suggested 

voice analysis to automatically detect patients 

suffering from COVID-19 [12, 16-17] since the 

voice and respiratory system are infected by the 

disease. 

Based on various research indicating that 

COVID-19 patients' voices are infected by the 

disease [16], we present in this study, a machine 

learning method based on gammatone 

cepstral coefficients (GTCC) and the Mel-frequency 

cepstral coefficients (MFCC) for COVID-19 

diagnosis, extracted from cough recordings. A 

binary classification was performed to discriminate 

positive COVID patients from healthy controls. The 

records are collected from the Coswara Dataset, a 

crowdsourcing project from the Indian Institute of 

Science (IIS). After data collection, we extracted the 

GTCC and the MFCC from the cough records. These 

acoustic features are mapped directly or after 

selection to k-nearest neighbor (kNN) for k equals 3, 

5, and 7, Decision Tree (DT), deep neural network 

(DNN), and support vector machine (SVM). The FS 

is done by minimum redundancy maximum 

relevance (mRMR), ReliefF, and analysis of 

variance (ANOVA). The model evaluation is 

performed by the confusion matrix and the metrics 

such as sensitivity, specificity, precision, accuracy, 

f1-score, and the Matthews Correlation Coefficient 

(MCC). 

 

2. METHODS 

2.1. Dataset 

The data is collected from the Coswara Project at 

the Indian Institute of Science Bangalore [18]. The 

dataset consists of vowel sustained phonation (/a/, 

/e/, and /o/), a counting exercise, breathing sounds, 

and cough recordings used in this investigation. On 

April 13th, 2020, the collection of records began. 

The primary purpose of the data collection 

strategy was to reach out to the worldwide human 

population. To accomplish this, a website 

application with a simple and interactive user 

interface was created. Start recording sound samples 

using the device's microphone by opening the 

application in a web browser on a computer or 

mobile device, and entering the necessary metadata 

anonymously. The application is utilized for 5 to 7 

minutes on average. The user was told to use a 

personal device, to clean it with sanitizer before and 

after recording, and to keep it 10 cm away from their 

mouths. The sampling frequency used for the audio 

samples is 48 kHz. The annotator (human) listens to 

each sound clip and responds to a few questions.  

The dataset is divided into 77 positive COVID-

19 cases and 82 healthy controls reflecting the true 

negatives. Tables 1 and 2 list the demographic 

information, symptoms, and comorbidities for each 

class. 

 

2.2 Acoustic features 

GTCC have demonstrated superiority when 

modeling cough signals over the traditional MFCC 

with a comparable computing cost [19]. The 

diversity between the two methods leads to better 

performance when they rebuild a combined feature 

space [20]. Therefore, in this study we utilized both 

cepstral coefficients algorithms to analyze COVID-

19 cough records.  

We have extracted 13 GTCC and MFCC 

coefficients, with deltas, in addition to the pitch for 

each frame, per subject, resulting in 53 features. The 

concept behind employing delta (differential) 

coefficients is that understanding the dynamics of 

the power spectrum is necessary for better speech 

recognition. The delta coefficients are calculated by 

the formula below. 

 
  Table. 1.  Sex and age group of the participants for each class 

Age (years old) 

Sex [20-29] [30-39] [40-49] [50-59] >=60 

Positive 45 Males 

32 Females 

48 9 6 11 3 

Negative 54 Males 

28 Females 

44 11 7 12 8 

 
 

 

 

 
Fig. 1. COVID-19 diagnosis with cough recording diagram 
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𝑑𝑡 =
∑ 𝑛(𝐶𝑡+𝑛−𝐶𝑡−𝑛)
𝑁
𝑛=1

2∑ 𝑛2𝑁
𝑛=1

  (1) 

where 𝑑𝑡 is a delta coefficient estimated in terms 

of the static coefficients 𝐶𝑡−𝑛 to 𝐶𝑡+𝑛 from frame 𝑡. 
𝑛 is commonly assumed to be 2.  

 

2.3. MFCC 

The MFCC coefficients (Mel Frequency Cepstral 

Coefficients) are the most used parameters in speech 

recognition systems. MFCC analysis consists of 

exploiting the properties of the human auditory 

system by transforming the linear frequency scale 

into the Mel scale. This last scale is encoded through 

a bank of 15 to 24 triangular filters spaced linearly 

up to 1 kHz, then spaced logarithmically up to the 

high frequencies. The conversion from linear scale 

to Mel scale is given by: 

𝑚𝑒𝑙 = 2595 log10(1 +
𝑓𝐻𝑧

700
)  (2) 

On a signal analysis frame, the MFCC 

coefficients are calculated from the energies of the 

bank of triangular filters in frequency scale Mel [21]. 

The first d cepstral coefficients (in general d is 

chosen between 10 and 15) C_k can be calculated 

directly by applying the discrete cosine transform to 

the logarithm of the energies E_i of a bank of M 

filters: 

𝐶𝑘 = ∑ log(𝐸𝑖) . cos ⌈
𝜋𝑘

𝑀
(𝑖 −

1

2
)⌉ 𝑘 = 0,… , 𝑑 ≤ 𝑀𝑀

𝑖=1  (3) 

The discrete cosine transform provides 

uncorrelated coefficients. The coefficient C_0 

represents the sum of the energies. Generally, this 

coefficient is not used. It is replaced by the logarithm 

of the total energy E_0 calculated and normalized on 

the analysis frame in the time domain. In this study, 

we have used 13 MFCC coefficients. 

 

2.4. GTCC 

A collection of filters for the cochlea simulation 

is called the gammatone filter bank. The magnitude 

parameters of a human auditory filter are quite 

similar to the impulse response of a gammatone 

filter. A gammatone filter bank can be used to 

represent the mobility of the basilar membrane. The 

impulse response of a gammatone filter is the 

product of a sinusoidal tone with a center frequency 

𝑓𝑐 and a Gamma distribution. 

𝑔(𝑡) = 𝐾𝑡𝑛−1𝑒−2𝜋𝐵𝑡cos⁡(2𝜋𝑓𝑐𝑡 + 𝜑) (4) 

where 𝐾 amplitude gain, 𝑛 filter order, 𝐵 is the 

filter bandwidth, 𝑓𝑐 center frequency (in Hertz), and 

𝜑 is a phase shift. The function utilized to simulate 

the human auditory response is comparable to that of 

the fourth-order gammatone filter [22].  

As the center frequency rises, the gammatone 

filters' bandwidth also rises. The bandwidth of a 

fourth-order gammatone filter can be calculated 

using the equations: 

𝐵 = 1.019 × 𝐸𝑅𝐵(𝑓𝑐)  (5) 

Where 𝐸𝑅𝐵 is the equivalent rectangular 

bandwidth abbreviation. The auditory filter width at 

each location along the cochlea is measured 

psychoacoustically using the ERB. Rectangular 

band-pass filter simplification is used to estimate the 

bandwidth in human hearing. The value of 𝐸𝑅𝐵 

centered at frequency 𝑓𝑐 is the auditory filter's 

bandwidth. 𝐸𝑅𝐵 can be modeled in many different 

ways from 𝑓𝑐. The link between 𝐸𝑅𝐵 and 𝑓 can 

roughly be described as [23] 

𝐸𝑅𝐵𝑆(𝑓) = 24.7 + 0.108𝑓 (6) 

The number of 𝐸𝑅𝐵𝑠 below each frequency is 

the definition of the 𝐸𝑅𝐵 scale: 

𝐸𝑅𝐵𝑆(𝑓) = 21.4 log10(1 + 0.00437𝑓)       (7) 

Every point in the 𝐸𝑅𝐵 space should be covered 

by the filter bank to accurately mimic the human 

auditory frequency spectrum. According to Eq.6, the 

center frequencies of each gammatone filter are 

evenly spaced on the 𝐸𝑅𝐵 scale. which is given by 

𝑓𝑐𝑖 = 𝐸𝑅𝐵𝑆−1(𝐸𝑅𝐵𝑆(𝑓𝑙𝑜𝑤) +
𝐸𝑅𝐵𝑆(𝑓ℎ𝑖𝑔ℎ)−𝐸𝑅𝐵𝑆(𝑓𝑙𝑜𝑤)

𝑁
𝑖)           (8) 

Where 𝐸𝑅𝐵𝑆−1 is the inverse of the 𝐸𝑅𝐵𝑆, 𝑁 is 

the number of gammatone filters, 𝑓𝑙𝑜𝑤 is the lowest 

frequency taken into consideration set to 10Hz, 𝑓ℎ𝑖𝑔ℎ 

is the highest frequency set to 2kHz, and 𝑖 is the filter 

index. GTCC calculation block diagram is illustrated 

in figure 2 

 

Fig. 2. GTCC calculation block diagram, 

where 𝑛 is the number of filters in the filter 

bank, and 𝑀 is the number of coefficients 

recovered by GTCC. 

 

2.5. Classification algorithms 

2.5.1. K-NN 

The K-nearest neighbors (kNN) is an easy-to-

implement supervised Machine Learning algorithm 

that can be used to solve classification and regression 

problems [24]. The intuition behind the K nearest 

neighbors algorithm is one of the simplest of all 

supervised machine learning algorithms:  

Step 1: Select the number K of the neighbors  

Step 2: Calculate the distance  

Step 3: Take the K nearest neighbors according 

to the calculated distance.  

Step 4: Among these K neighbors, count the 

number of points belonging to each category.  

Step 5: Assign the new point to the most present 

category among these K neighbors.  

 

Table 2. Disease symptoms and comorbidities of the participants for each class 

 asthma cold cough loss_of_smell diabetes fever pneumonia 

Positive 2 13 19 5 1 14 1 

Negative 0 0 0 0 2 0 0 
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2.5.2. SVM 

Support vector machines (SVM) are supervised 

machine learning models focused on solving 

mathematical discrimination and regression 

problems. They were conceptualized in the 1990s 

from a statistical learning theory developed by 

Russian computer scientists Vladimir Vapnik and 

Alexey Chervonenkis: the Vapnik-Chervonenkis 

theory [25]. This model was quickly adopted due to 

its ability to work with high-dimensional data and 

the good results achieved in practice. Requiring a 

small number of parameters, SVMs are appreciated 

for their ease of use.  

The principle of SVMs consists in reducing a 

classification or discrimination problem to a 

hyperplane (feature space) in which the data is 

separated into several classes whose boundary is as 

far as possible from the data points (or "maximum 

margin"). Hence the other name given to SVMs is 

wide-margin separators. The concept of boundary 

implies that the data is linearly separable. To achieve 

this, support vector machines use kernels, i.e. 

mathematical functions to project and separate data 

in vector space, "support vectors" being the data 

closest to the border. It is the furthest boundary of all 

the training points which is optimal, and which 

therefore presents the best capacity for 

generalization. 

 

2.5.3. Decision tree 

In graph theory, a tree is an undirected, acyclic, 

and connected graph. The set of nodes is divided into 

three categories:  

The root node (access to the tree is through this 

node),  

Internal nodes: nodes that have descendants (or 

children), which are in turn nodes,  

Terminal nodes (or leaves): nodes that have no 

descendants.  

Decision trees [26] are a category of trees used in 

data mining and business intelligence. They employ 

a hierarchical representation of the data structure in 

the form of sequences of decisions (tests) to predict 

an outcome or a class. Each individual (or 

observation), which must be assigned to a class, is 

described by a set of variables that are tested in the 

nodes of the tree. Testing is done in internal nodes 

and decisions are made in leaf nodes. 

 

2.5.4. DNN 

A set of interconnected formal neurons allows 

the resolution of complex problems, thanks to the 

adjustment of the weighting coefficients in a 

learning phase. A neural network is inspired by the 

functioning of biological neurons and takes shape in 

a computer in the form of an algorithm. The neural 

network can modify itself according to the results of 

its actions, which allows learning and problem-

solving without algorithms, therefore without 

classical programming [27]. 

Unlike ordinary programs made to perform a 

given action, the neural network uses an algorithm to 

learn new data from previously recorded examples 

that it analyzes rigorously. This is a true model of 

learning by experience. It is also endowed with 

generalization and classification capabilities which 

allow it to carry out very sophisticated statistical 

operations. After standardizing the data, we set the 

first layer at 25 neurons the second and the third at 

10 neurons each with ReLu activation function, and 

100 iterations. 

 

2.6. Feature selection 

Feature selection is a dimensionality reduction 

method used in machine learning and data 

processing. It consists, in a high-dimensional space, 

in finding a subset of relevant variables. That is to 

say that one seeks to minimize the loss of 

information coming from the suppression of all the 

other variables. FS techniques are used for four 

reasons:  

Simplify the models to facilitate their 

interpretation by researchers/users,  

Reduce learning time,  

Avoid the scourge of dimension,  

Improve generalization by reducing overfitting. 

 

2.6.1. mRMR 

“Min-Redundancy, Max-relevance” (mRMR) is 

a filtering method for FS proposed by [28]. This 

method is based on classical statistical measures 

such as mutual information, correlation, etc. The 

basic idea is to take advantage of these measures to 

try to minimize the redundancy (mR) between the 

variables and maximize relevance (MR). The 

authors use mutual information to calculate the two 

factors mR and MR. The calculation of the 

redundancy and the relevance of a variable is given 

by the following equation: 

𝑅𝑒𝑑𝑜𝑛𝑑𝑎𝑛𝑐𝑒(𝑖) =
1

|𝐹|2
∑ 𝐼(𝑖, 𝑗)𝑖,𝑗∈𝐹  (9) 

𝑃𝑒𝑟𝑡𝑖𝑛𝑒𝑛𝑐𝑒(𝑖) =
1

|𝐹|2
∑ 𝐼(𝑖, 𝑌)𝑖,𝑗∈𝐹  (10) 

– |𝐹|: represents the size of the set of variables. 

– 𝐼(𝑖, 𝑗): is the mutual information between the 

𝑖𝑡ℎ and the 𝑗𝑡ℎ variable.  

– 𝐼(𝑖, 𝑌): is the mutual information between the 

𝑖𝑡ℎ variable and the set of labels of class Y. The score 

of a variable is the combination of these two factors 

such as:  

𝑆𝑐𝑜𝑟𝑒⁡(𝑖) = 𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒⁡(𝑖) − 𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦⁡(𝑖)       (11) 

 

2.6.2. ReliefF 

This algorithm, introduced under the name of 

ReliefF [29], does not content itself with eliminating 

redundancy but defines a criterion of relevance. This 

criterion measures the ability of each feature to 

group data with the same label and discriminates 

between data with different labels. The algorithm is 

described below.  

1: Initialize the weights  

2: Randomly draw a data 𝑋𝑖  
3: Find the 𝐾 nearest neighbors of 𝑋𝑖 having the 

same tags (hits),  
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4: Find the 𝐾 nearest neighbors of 𝑋𝑖 having a label 

different from the class of Xi (misses)  

5: For each characteristic update the weights 

 

𝑊𝑑 = 𝑤𝑑 − ∑
𝑑𝑖𝑓𝑓(𝑥𝑖,𝑑𝑖,ℎ𝑖𝑡𝑠𝑖)

𝑚∗𝑘
+𝐾

𝑗=1

∑ (
𝑝(𝑐)

1−𝑝(𝑐𝑙𝑎𝑠𝑠(𝑥𝑖))
)𝑐≠𝑐𝑙𝑎𝑠𝑠(𝑥𝑖)
∑

𝑑𝑖𝑓𝑓(𝑥𝑖,𝑑𝑖,ℎ𝑖𝑡𝑠𝑖)

𝑚∗𝑘

𝐾
𝑗=1     (12) 

6: The distance used is defined by:  

𝑑𝑖𝑓𝑓(𝑥𝑖 , 𝑑𝑖 , ℎ𝑖𝑡𝑠𝑖) =
|𝑥𝑖𝑑−𝑥𝑗𝑑|

max(𝑑)−min⁡(𝑑)
  (13) 

𝑀𝑎𝑥(𝑑) (resp. 𝑚𝑖𝑛(𝑑)) designates the 

maximum (resp. minimum) value that the 

characteristic designated by the index 𝑑 can take, on 

the set of data. 𝑥𝑖𝑑 is the value of the 𝑑𝑡ℎ 

characteristic of 𝑥𝑖. 
 

2.6.3. ANOVA 

In ANOVA, we study a quantitative variable to 

which we assign one or two qualitative variables: 

categorical variables. These categorical variables are 

called “factors” or “variability factors”. If the 

analysis of variance focuses on a single factor, then 

it is called one-way analysis or One-way ANOVA. 

If several factors enter into the analytical test, then 

we speak of two-factor analysis, multifactorial or 

MANOVA for Multivariate Analysis Of Variance.  

ANOVA is used concretely to highlight the 

existence of an interaction between these variability 

factors and the main quantitative variable studied, 

generally, a population divided into groups. 

We use ANOVA to understand how the different 

groups respond to the statistical test. If there is a 

statistically significant result, i.e. the means of the 

different groups are equal on the factors studied, this 

means that the two population groups are similar.  

Like other types of statistical tests, ANOVA 

compares the means of different groups and 

demonstrates the existence of statistical differences 

between the means. This statistical method is part of 

the omnibus tests. This means that it identifies a 

difference but does not tell which specific groups are 

statistically different from each other. 

 

2.7. Model evaluation 

The dataset is split into two sections. For each 

label, 80% of the data is used for training, while the 

remaining 20% is used for testing. We have 63 

positives and 66 negatives in the training set, and we 

used 14 positives and 16 negatives in the test set. We 

used all of the GTCC and MFCC gathered from 

cough records to increase the performance of our 

model. That is, we classified the signals based on 

their frames, and the frames were labeled based on 

the original data. As a result, there were 12684 

observations, which were divided as follows: 

• 7424 negatives (5940 training and 1484 test) 

• 5260 positives (4208 training and 1052 test) 

To avoid data leakage, the acoustical features of 

the test set were extracted independently from the 

training set, hence no test frame was used when 

training our models. 

2.7.1. k-fold validation 

To accomplish cross-validation, we employ the 

k-fold cross-validation approach. The input data is 

split into k subsets for k-fold cross-validation (in this 

work we set k to 5). The machine learning model is 

trained on all subsets except one (k-1) and then 

evaluated on the subset that was not utilized for 

training. This process is repeated k times, each time 

with a distinct subset saved for evaluation (and not 

used for training). We evaluated the models with the 

test set after verifying them with the training set 

using 5-fold cross-validation, first by frames, then by 

subjects. 

 

2.7.2. Confusion matrix  

A confusion matrix is a tool for measuring the 

performance of classification models with 2 or more 

classes. In the binary case (i.e. with two classes, the 

simplest case), the confusion matrix is a table with 4 

values representing the different combinations of 

actual values and predicted. This matrix is essential 

to define the different classification metrics such as 

sensitivity, specificity, precision, accuracy, f1-score, 

and the MCC. 

 

3. RESULTS 

3.1. Dataset 

In this section, we present the results achieved by 

applying the models to the test set (30 

observations/2536 frames) 

• 16 negatives (1484 frames) 

• 14 positives (1052 frames) 

 

3.2. All features 

Table 3 illustrates the confusion matrix obtained 

using all features. The best classification results are 

obtained by the 3NN. This model was able to 

achieve: 

For the negatives, 1468 correctly classified 

observations, with only 16 false positives, 

As for the class of the positives, 1037 

observations have been detected, and 15 

misclassified,  

The ROC curve and AUC values for all 

classifiers are presented in table 4. To evaluate the 

performances of the models, we calculated the 

accuracy, sensitivity, specificity, precision, f1-score, 

and MCC for each classifier (Table 5). The k-NN 

classifiers have achieved very good performances, 

they obtained an accuracy of 98.78 percent for k=3, 

98 percent for k=5, and 96.65 percent for k=7. The 

SVM was able to obtain the second-best accuracy 

result with 98.46 percent. The DNN has 95.31 

percent accuracy, and lastly 79.26 percent for DT. 

With 98.57 percent sensitivity, and 98.92 percent 

specificity, the 3NN is able to correctly identify 

patients with and without COVID-19 using cough 

records. Other models except for DT have achieved 

high percentages in both sensitivity and specificity 

exceeding 95 percent. The precision using 3NN is 

98.48 percent, meaning 98 percent of COVID-19 
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patients labeled by the algorithm are truly suffering 

from the disease, which is very handy in a real-world 

application. The other models have comparable 

results; 98.17 percent for 5NN, 97.92 percent for 

SVM, 97 percent for 7NN, and 93.4 percent for 

DNN. As for the DT, the precision obtained was 

78.71 percent. The F1-score values for each model 

were calculated to evaluate the overall 

performances. The 3NN has an f1-score of 98.53 

percent, followed by the SVM at 98.15 percent, the 

5NN at 97.56 percent, the 7NN at 95.68 percent, and 

the DNN at 94.42 percent. All these models are able 

to distinguish true positive, true negative, false 

positive, and false negative quite accurately. The DT 

comes last with a 73.27 percent f1-score. The MCC 

score of the 3NN is 0.97, 0.96 for the 5NN and SVM, 

0.93 for the 7NN, and 0.9 obtained by the DNN. 

These models have an excellent correlation between 

prediction and observation, meaning highly precise 

COVID-19 diagnosis. 
 

Table 3. Confusion matrices using all features 

Decision tree DNN 

  
SVM 3NN 

  
5NN 7NN 
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Table 4. ROC curves and AUC values using all features 

Decision tree DNN 

 
 

SVM 3NN 

  

5NN 7NN 

 
 

 

Table 5. Evaluation metrics using all features 

 Sensitivity % Specificity % Precision %  Accuracy % F1-score % MCC 

DT 68.54 86.86 78.71 79.26 73.27 0.57 

DNN 95.45 95.22 93.4 95.31 94.42 0.9 

SVM 98.38 98.52 97.92 98.46 98.15 0.96 

3NN 98.57 98.92 98.48 98.78 98.53 0.97 

5NN 96.96 98.72 98.17 98 97.56 0.96 

7NN 94.5 98 97 96.65 95.68 0.93 
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3.3. mRMR 

We applied the mRMR to select the more 

pertinent features. Figure 3 shows the features 

ranked according to their importance score. In this 

case, the 12 features mapped to the classifiers are 

MFCC_coeff_9, GTCC_coeff_3, MFCC_coeff_12, 

MFCC_coeff_13, GTCC_coeff_5, 

MFCC_coeff_10, GTCC_coeff_6, GTCC_coeff_4, 

GTCC_coeff_13, GTCC_coeff_11, 

GTCC_coeff_12, and GTCC_coeff_7. We have 

selected the first 12 features since after the 12th 

feature the importance score becomes negligible. 

From figure 3, we noticed the first feature has high  

 

 
Fig. 3. Feature importance score sorted using the mRMR 

 

Table 6. Confusion matrices using the mRMR   

Decision tree DNN 

  

SVM 3NN 
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5NN 7NN 

  

 
Table 7. ROC curves and AUC values using mRMR 

Decision tree DNN 

  
SVM 3NN 

  
5NN 7NN 

  
 

Table 8. Evaluation metrics using mRMR 

 Sensitivity % Specificity % Precision %  Accuracy % F1-score % MCC 

DT 55.04 89.7 79.1 75.3 64.91 0.47 

DNN 86.22 91.04 87.21 89.04 86.71 0.77 

SVM 87.83 91.64 88.17 90.06 88 0.79 

3NN 94.39 96.43 94.48 95.63 94.44 0.91 

5NN 92.97 95.75 93.95 94.6 93.45 0.88 

7NN 91.35 94.88 92.67 93.41 92 0.86 
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importance score compared to the other ones, and 

after the fourth, the score is very low.  

When performing FS by the mRMR, the 3NN has 

the best classification results: 

For the negatives, the model has correctly 

classified 1431 observations, with 53 false positives,  

In the class of the positives, 998 observations 

have been identified, and 54 are misclassified. 

When performing FS by the mRMR, the 3NN has 

the highest sensitivity (94.39 percent), specificity 

(96.43 percent), precision (94.48 percent), accuracy 

(95.63 percent), f1-score (94.44 percent), and MCC 

(0.91). Followed by the other kNN models; the 5NN 

and the 7NN have 94.6 percent and 93.41 percent 

accuracy, 93.45 percent and 92 percent f1-score, and 

0.88 and 0.86 MCC, respectively. As for the other 

classifiers the SVM and the DNN have a good 

performance for all metrics, and the worst results are  

achieved by the DT. The ROC curve and AUC 

values for all classifiers are presented in table 7. 

 

3.4. ReliefF 

Figure 4 represents the feature sorted based on 

the importance scores using the ReliefF FS 

algorithm. By applying the ReliefF, we have used: 

GTCC_coeff_1, MFCC_coeff_13, GTCC_coeff_4, 

MFCC_coeff_9, GTCC_coeff_6, MFCC_coeff_6, 

MFCC_coeff_5, MFCC_coeff_1, GTCC_coeff_10, 

GTCC_coeff_13, MFCC_coeff_4, and 

GTCC_coeff_5. 

Reducing the space features by mapping only the 

12 first features sorted by the ReliefF, the 3NN has 

the higher accuracy (97.6 percent). The other kNN 

models achieved 96.77 percent for k=5, and 95.86 

percent for k=7. The SVM has 91.48 percent, the 

DNN 89.79 percent, and DT obtained 76.38 percent. 

The 3NN detailed performance for each class is as 

follows:  

1456 observations negatives have been correctly 

classified, with 29 false positives. 

And 1020 positive subjects have been detected, 

and 32 misclassified, for a sensitivity of 96.96 

percent, a specificity of 98.05 percent, a precision of 

97.24 percent, an f1-score of 97.1 percent, and an 

MCC of 0.95. 

The ROC curve and AUC values for all 

classifiers are presented in table 10. 

The other kNN models have a percentage above 

95 percent for all metrics, with 0.93 MCC for 5NN 

and 0.91 MCC for 7NN. Both SVM and DNN have 

achieved good results; f1-score of 87.68 percent and 

0.79 MCC by using the DNN, and 89.68 percent f1-

score and 0.82 MCC by the SVM (Table 11). 

 

 

Table 9. Confusion matrices using the ReliefF algorithm 
 

Decision tree DNN 

  
SVM 3NN 
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5NN 7NN 

  
 

Table 10. ROC curves and AUC values using ReliefF 

Decision tree DNN 

 

 

SVM 3NN 

  

5NN 7NN 
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Table 11. Evaluation metrics using ReliefF 

 Sensitivity % Specificity % Precision %  Accuracy % F1-score % MCC 

DT 61.6 86.86 76.87 76.38 68.39 0.51 

DNN 87.64 91.3 87.73 89.79 87.68 0.79 

SVM 90.21 92.39 89.36 91.48 89.78 0.82 

3NN 96.96 98.05 97.24 97.6 97.1 0.95 

5NN 95.91 97.37 96.28 96.77 96.1 0.93 

7NN 94.68 96.7 95.31 95.86 95 0.91 

       

 

3.5. ANOVA 

By applying the ANOVA FS method, the 

features are listed based on their importance scores 

in Figure 5. The first 12 selected features are: 

MFCC_coeff_13, MFCC_coeff_9, 

MFCC_coeff_12, GTCC_coeff_5, GTCC_coeff_6, 

GTCC_coeff_11, GTCC_coeff_4, MFCC_coeff_6, 

GTCC_coeff_12, GTCC_coeff_13, GTCC_coeff_7, 

and GTCC_coeff_2. 

 
Fig. 4. Feature importance scores sorted using the ReliefF 

algorithm 

 
Fig. 5. Feature importance scores sorted using the 

ANOVA algorithm 

 

Reducing the space features by selecting the 12 

features ranked first by ANOVA, the 3NN again has 

the best results; 97.2 percent accuracy, 96.58 percent 

sensitivity, 97.64 percent specificity, 96.67 percent  

precision, 96.62 f1-score, 0.94 MCC. By classifying 

the dataset with this model, we have: 

1449 negative observations correctly classified, 35 

false positives, for a recall of 99 percent, 

And 1016 positive subjects have been detected, 36 

false negatives, 

To test the effectiveness of our model to detect 

COVID-19 patients by using the cough recording, 

we classified the subjects using the 3NN and the 

ReliefF FS algorithm, we selected this model since 

we lose 1 percent of accuracy with only 22 percent 

of features, (12 features instead of 53). The 

classification was done based on the most frequent 

value predicted by frame for each subject, and the 

results demonstrate how accurate our approach is in 

predicting the subjects with COVID-19 disease 

(Figure 6). 

 
Fig. 6. confusion matrix by subject using the SVM and 

the ReliefF FS algorithm 
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Table 12. Confusion matrices using ANOVA 

Decision tree DNN 

  
SVM 3NN 

  
5NN 7NN 
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Table 13. ROC curves and AUC values using ANOVA 

Decision tree DNN 

 
 

SVM 3NN 

  

5NN 7NN 

  
Table 14. Evaluation metrics using ANOVA 

 Sensitivity % Specificity % Precision %  Accuracy % F1-score % MCC 

DT 67.78 84.43 75.53 77.52 71.44 0.53 

DNN 88.5 91.24 87.75 90.1 88.12 0.78 

SVM 89.92 92.92 90 91.68 89.97 0.83 

3NN 96.58 97.64 96.67 97.2 96.62 0.94 

5NN 95.25 97.04 95.8 96.3 95.52 0.92 

7NN 94.3 95.82 94.12 95.19 94.2 0.9 
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4. CONCLUSION 

 

In this study, we examine and evaluate the 

capability of cough analysis to reliably identify 

COVID-19. After extracting the gammatone and 

Mel-frequency cepstral coefficients from COVID-

19 positive patients and healthy controls, we used a 

variety of machine learning methods to select the 

features and classify the observations. The best 

classification results were obtained when all 

characteristics and the 3NN classifier were 

combined. The model has an accuracy and f1-score 

of about 98 percent. The 3NN has the advantage 

when applying FS, with accuracy and an f1-score 

above 97 percent when it was combined with the 

ReliefF. All model shows promising results except 

for the DT, which indicate the effectiveness of the 

approach presented in this paper. The AI-based 

screening method is important for restricting the 

transmission of the virus, by developing models with 

accurate sensitivity and specificity; in our case, we 

were able to reach 98 percent for both metrics, with 

such high accuracy we believe the proposed method 

could help in the development of straightforward, 

inexpensive, quick, and accurate diagnosis system to 

reduce the likelihood and risk of COVID-19 

spreading, and for better monitoring and 

management of the disease.  

These findings are promising, but they must be 

validated by a controlled clinical trial conducted by 

medical specialists. Furthermore, because of the 

pandemic's rapid and ongoing expansion, there is 

still a lack of understanding regarding the disease's 

aetiology and progression, as well as the association 

between demographic and clinical data of COVID-

19 patients. In this investigation, we concentrated 

primarily on the effects of COVID-19 infection on 

voice quality. In our upcoming works, we intend to 

implement these models in embedded systems and 

assess their real-world effectiveness. 
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